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Real Time Optimization

Hierarchical control structure (Qin & Badgwell (2003);

Engell (2007)):

1. The Real Time Optimizer (RTO)

computes the operation point
according to economic criteria

and operation limits.

2. The RTO solves an optimization

problem based on a complex

nonlinear stationary model of
the plant.

3. The setpoints computed by the
RTO are sent to the MPC

control.

4. MPC solves a QP based on a

simplified dynamic model of the

plant and constraints.
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Drawbacks of the control structure

◮ RTO time scale (hours or days) VS MPC time scale

(minutes).

◮ Slow reaction to process variations (disturbances).

◮ There exist mismatches between the models of RTO and

MPC.

◮ The RTO may provide inconsistent setpoints to the MPC.
◮ Unreachability of the setpoints.
◮ Poor economic performances.
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Existing solutions

◮ SSTO or LP/QP-MPC (Muske (1997); Ying & Joseph
(1999); Marchetti et al. (2014))

◮ Same model as the MPC.
◮ Same sample time as the MPC.

◮ One-layer solutions
◮ Dynamic RTO (Biegler (2009); Würth et al. (2009))

◮ One layer RTO+MPC (Adetola & Guay (2010); Zanin et al.
(2002))

◮ Economic MPC (Amrit (2011); Angeli et al. (2012); Diehl

et al. (2011); Ferramosca et al. (2014))
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Economic Optimality - Comparative Study

Strategies taken into account

◮ MPC for tracking (Limon et al., 2008; Ferramosca et al.,

2009).

◮ One-layer RTO+MPC (Zanin et al., 2002).

◮ Suboptimal one-layer RTO+MPC (Alamo et al., 2014).

◮ Economic MPC (Ferramosca et al., 2014).

Criteria:

◮ Fulfillment of economic objectives.

◮ Computational burden.

◮ Stability.
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Problem Statement

◮ Consider a system described by a discrete-time linear

time-invariant model

x+ = Ax + Bu

y = Cx

◮ The system is subject to hard constraints on state and

input:

x ∈ X , u ∈ U

where X ⊂ R
n and U ⊂ R

m are compact sets.

Assumption

The pair (A,B) is controllable and the state is measured at each

sampling time.
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RTO Problem

◮ The economic criterion is given by the function

feco(x ,u,p)

where p is a vector of parameters which takes into account

prices, costs, production goals, etc.

◮ The economic criterion to be optimized may change

according to the market, the plant scheduling, or the data

reconciliation tasks.

◮ The optimal steady state provided by the RTO is:

(xs,us, ys) = arg min
x,u,y

feco(x ,u,p)

s.t . x = Ax + Bu, y = Cx ,

x ∈ X , u ∈ U

and is assumed to be unique.
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MPC for tracking: MPCT

◮ Cost function designed as a measure of the distance of the
predicted trajectory to the economic setpoint ys.

V t
N(x, ys ;u)=

N−1
∑

j=0

‖x(j)−x(N−1)‖2
Q +‖u(j)−u(N−1)‖2

R +VO(y(N−1), ys)

where x(j) = φ(j; x ,u), Q > 0, and R > 0.

◮ VO(y , ys) is a positive definite convex function such that the

unique minimizer of min
y∈Ys

VO(y , ys) is ys.

◮ Optimization problem PN(x , ys) given by:

min
u

V t
N(x, ys ;u)

s.t. x(0) = x,

x(j + 1) = Ax(j) + Bu(j), I0:N−1

y(j) = Cx(j), I0:N−1

x(j) ∈ X , u(j) ∈ U I0:N−1

x(N) = x(N − 1)
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Properties

◮ Feasibility: The constraint x(N) = x(N − 1) defines an
admissible equilibrium point, such that

x(N) = x(N − 1) = Ax(N − 1) + Bu(N − 1).

◮ Large domain of attraction: Since the set of constraints of

PN(x , ys) does not depend on ys, the feasible region of PN(x , ys)
does not depend on ys either.

◮ Optimality: Convergence to ys is ensured.

◮ Stability: A detailed stability proof for this controller can be

found in (Limon et al., 2008; Ferramosca et al., 2009).
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One-layer MPC: RTO+MPC
◮ This controller integrates the economic cost function as a

stationary extra cost added to the dynamic setpoint-tracking cost
function

V r
N(x, p;u)=

N−1
∑

j=0

‖x(j)−x(N−1)‖2
Q+‖u(j)−u(N−1)‖2

R + feco(x(N−1), u(N−1), p)

◮ Optimization problem Pr
N(x , p) given by:

min
u

V r
N(x, p;u)

s.t. x(0) = x,

x(j + 1) = Ax(j) + Bu(j), I0:N−1

y(j) = Cx(j), I0:N−1

x(j) ∈ X , u(j) ∈ U I0:N−1

x(N) = x(N − 1)

◮ Neither the cost function nor the optimization problem depends

on the economic setpoint ys.
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Gradient based MPC: subRTO+MPC
◮ Low-cost formulation of the previous one. Instead of the

nonlinear cost feco, the gradient of this function is added as extra
cost to the MPC controller.

V s
N (x, û, p;u) =

N−1
∑

j=0

‖x(j)−x(N−1)‖2
Q+‖u(j)−u(N−1)‖2

R

+∇feco(x̂(N−1),û(N−1),p)

[

x(N−1)−x̂(N−1)
u(N−1)−û(N−1)

]

◮ Optimization problem Ps
N(x , p) given by:

min
u

V s
N(x, û, p; u)

s.t. x(0) = x,

x(j + 1) = Ax(j) + Bu(j), I0:N−1

y(j) = Cx(j), I0:N−1

x(j) ∈ X , u(j) ∈ U I0:N−1

x(N) = x(N − 1)

where (û, x̂(N−1), û(N−1)) at time k is a previously known

feasible solution, obtained using the shifted solution applied to

the system at the sample time k − 1.
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Properties

◮ The MPC strategy is suboptimal:

The control law at time k is derived from u(k) = λu∗ + (1 − λ)û,

λ ∈ (0, 1), which is a convex combination of û with u∗, being the
last one the solution of the optimization problem Ps

N(x , p).

◮ It however ensures recursive feasibility and convergence to the
economic steady state, with a reduced computational cost.

◮ Stability: A detailed stability proof for this controller can be

found in (Alamo et al., 2014).
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Economic MPC - EMPCT

◮ The economic MPC considers the economic cost function as the
dynamic stage cost

V e
N(x,ys ,p;u)=

N−1
∑

j=0

feco(x(j)−x(N−1)+xs ,u(j)−u(N−1)+us ,p)+ VO(y(N−1), ys)

◮ Optimization problem Pe
N(x , ys, p) given by:

min
u

V e
N(x, ys, p;u)

s.t. x(0) = x,

x(j + 1) = Ax(j) + Bu(j), I0:N−1

y(j) = Cx(j), I0:N−1

x(j) ∈ X , u(j) ∈ U I0:N−1

x(N) = x(N − 1)
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Properties

◮ Function VO(y(N−1), ys) is the same as in the MPCT.

◮ As in the MPCT, we need to know the value of the economic

setpoint (xs, us, ys), which means that we need to solve the RTO
problem prior to the MPC problem.

◮ Stability: A detailed stability proof for this controller can be

found in (Ferramosca et al., 2014).

15 / 26



Properties

◮ Function VO(y(N−1), ys) is the same as in the MPCT.

◮ As in the MPCT, we need to know the value of the economic

setpoint (xs, us, ys), which means that we need to solve the RTO
problem prior to the MPC problem.

◮ Stability: A detailed stability proof for this controller can be

found in (Ferramosca et al., 2014).

15 / 26



Properties

◮ Function VO(y(N−1), ys) is the same as in the MPCT.

◮ As in the MPCT, we need to know the value of the economic

setpoint (xs, us, ys), which means that we need to solve the RTO
problem prior to the MPC problem.

◮ Stability: A detailed stability proof for this controller can be

found in (Ferramosca et al., 2014).

15 / 26



Polymerization reactor - CSTR

I
fi ,kd
−→ 2R (initiator decomposition)

M + R
ki−→Pi (chain initiation)

Pn + M
kp
−→Pn+1 (propagation)

Pn + Pm
ktd
−→Tn + Tm (termination by disproportionation)

Pn + Pm
ktc−→Tn+m (termination by combination)

1. Highly nonlinear system.

2. Output: the polymer intrinsic viscosity y1 = η, and the reactor
temperature y2 = T .

3. Input: The controller manipulates the initiator flow-rate (u1 = Qi)
and the liquid flow rate of the cooling jacket (u2 = Qc). The
remaining inlet flow-rates Qs and Qm are related to Qi by ratio

control.

Qm =
Q̄m

Q̄i

Qi , Qs = 1.5Qm − Qi
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Linear model for prediction

A =





0.9788 0.0292 0.0010
−0.0006 0.9375 0.0011
0.0124 −0.0327 0.9569





,

B =





10.2205 −1.2333
−6.6059 −1.3983
−7.1717 0.2481





, C =

[

−0.0757 0.0447 −0.1073
0.6023 −0.2749 −0.0256

]

◮ Model obtained by subspace identification techniques.

◮ Linearization point: uss = (0.030;0.131) and

yss = (3.8968;323.56).

◮ The PRBS signal used to excite the system has an

amplitude of 0.1uss.
◮ The control scheme is been equipped with a state

observer and disturbance estimator of the form:

x̂+ = Ax̂ + Bu + Lx (Cx̂ + d̂ − yp)

d̂+ = d̂ + Ld (Cx̂ + d̂ − yp)

where yp is the output from the plant.
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Economic function and constraints

◮ Economic objective:maximization of the production rate plus a

separation cost

feco = QtD1 + (p(1)QcT − p(2)Qc)

where p = (p(1), p(2)) are prices.

◮ Constraints: X = {x | ‖x‖∞ ≤ 20},

U = {y | [0.01; 0.08]
′
≤ y ≤ [0.07; 0.25]

′
}, and

Y = {y | [3; 310]
′
≤ y ≤ [5.5; 331]

′
}.

◮ Simulations start at the nominal operating point (uss , yss). Three

changes of prices have been considered: p1 = (1; 1),
p2 = (1.5; 1) and p3 = (0.1; 5).
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Economic optimality (1)
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Economic optimality (2)
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Economic optimality (3)
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Economic optimality (4)

Analysis:

◮ All the controllers drive the system to the economically

optimal setpoint, guaranteed feasibility and ensuring

stability.

◮ EMPCT has a transient response very different from the

other three controllers, because it optimizes the economics

in the dynamic part of the MPC cost function. Hence the

evolution of the system under the EMPCT controller is also

optimal in the transient.

◮ subRTO+MPC speeds up the convergence to the

economic setpoint.

◮ MPCT, in the second change of the economic cost, is not

able to drive the system to the economically optimal point.
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Computational burden

Table: Execution time (in seconds)

Algo. Max Min Average

MPCT QP 0.4591 0.0096 0.0230

RTOMPC SQP 0.6880 0.0182 0.0807

sub-RTOMPC QP 0.6114 0.0065 0.0096

EMPCT SQP 0.9382 0.0257 0.1393

◮ The MPCT is the faster algorithm since it needs to solve

just a QP problem.

◮ The subRTO+MPC is also very fast in the QP solution.

However, we are not considering the calculation of the

gradient time.

◮ The solution of the EMPCT problem is clearly the one that

needs more computational time, due to the high

nonlinearity of the cost function.
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Summary
◮ Each of the considered approaches is capable to ensure

convergence, feasibility and stability, always fulfilling

constraints.

◮ Setpoint tracking controllers speed up convergence to the

setpoint.

◮ Economic MPC also provide economically optimal

transient trajectories.

◮ Computational burden is also strictly connected with the

proper formulation, with RTO+MPC and EMPCT being the

most computational expensive, due to the nonlinearities in

their formulations.

◮ MPCT and EMPCT needs to know the economic setpoint,

hence an a priori RTO problem is needed to be solved.

◮ RTO+MPC and subRTO+MPC are able to drive the system

to the economically optimal setpoint by themselves.
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Thanks for your attention!
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