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. The Real Time Optimizer (RTO)

computes the operation point
according to economic criteria
and operation limits.

. The RTO solves an optimization

problem based on a complex
nonlinear stationary model of
the plant.

. The setpoints computed by the

RTO are sent to the MPC
control.

. MPC solves a QP based on a

simplified dynamic model of the
plant and constraints.
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Drawbacks of the control structure

» RTO time scale (hours or days) VS MPC time scale
(minutes).

» Slow reaction to process variations (disturbances).

» There exist mismatches between the models of RTO and
MPC.

» The RTO may provide inconsistent setpoints to the MPC.

» Unreachability of the setpoints.
» Poor economic performances.
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» SSTO or LP/QP-MPC (Muske (1997); Ying & Joseph
(1999); Marchetti et al. (2014))
» Same model as the MPC.
» Same sample time as the MPC.
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» Same model as the MPC.
» Same sample time as the MPC.

» One-layer solutions

» Dynamic RTO (Biegler (2009); Kadam & Marquardt (2007);
Wirth et al. (2009))

» One layer RTO+MPC (Adetola & Guay (2010); Zanin et al.
(2002))

» Economic MPC (Amrit (2011); Angeli et al. (2012); Diehl
et al. (2011); Fagiano & Teel (2013); Ferramosca et al.
(2014))
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Industrial application

» Controllers use linear prediction models.

» Plants has sparse operation points with different
economics behaviors.

» When the operation point changes, the prediction model is
not adequate to represents the new operative condition.

» YPF (Argentina) and Petrobras (Brazil) report this issue.

Proposed solution:
multi-model representation of the plant (Badgwell (1997))
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» The real model of the plant is not known.
» We have a collection of linear model M = {x, ..., 7.} s.t.
T Xt =Ax+Bu, yi=Cx, i€l

» 7, € I1 defines the real model, 7, € I a nominal model for
predictions.
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» Define an augmented system with an integrating output
disturbance:
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Multi-model description of the plant
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» Control structure equipped with one observer per each model:
Xitk +1) = Ax(k) + Biu(k)
di(k +1) aj(k) + L (Ci%i(k) — y(k) + di(k))

» d(k) is an estimation of the output disturbance.
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in their interior.

» A is stable. The pair (A;, B;) is controllable.

» feco(Y, U, p) is a convex nonlinear function that takes into
account the economic objectives of the plant.

(Xs,Us,¥s) = arg min feco(y, U, p)

[hat}

st. xeX, uelu
X=AXx+Bu, y=0Cx

» pis a parameter that takes into account prices, costs or
production goals.
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Basic Assumptions

» The stationary conditions of each model can be mapped in
a m-dimensional linear subspace s. t.

(Xs,is Us) = My i6, ysi= Ny;0
given a parameter § € R™.

» The sets of admissible equilibrium states, inputs and
outputs are

Zsi = {(x,u) € X xU | x; = Aix; + Biu}

)

Xs; = {xi€ X|3u el suchthat (x;,u) € Z5;}

)

Vsi = {y=0Cixi| (x;,u) € Zs,}

)
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Multi-model one-layer MPC

Include the RTO economic objective in the MPC control problem.
» Economic and dynamic objectives in one optimization problem.
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Multi-model one-layer MPC

Include the RTO economic objective in the MPC control problem.
» Economic and dynamic objectives in one optimization problem.
» Reduces incosistency/unreachability.
» Better economic performance.

The proposed cost function reads:

N—1

Vn(x, d,p:u, 9):Z||Xn0(j) —Xs,nol| 5+ [ U(f) — Us |5+ Vol hs, Us, p)
j=0

where

Ys.1
o(hs, us, p Z fecol( }/s i»Us, p), and hs= :
YS,L

12/23



Optimization problem
Problem Py(x, 2, d, p, i, 0)

min - Vi(x. d. p;u,6)

S.t. X/(O) = )A(,', ie Ii..
xi(j +1) = Aixi(j) + Biu(j), j€lon—1, 1€lss
Xi(j) eX, U(j) eu, jE Io.n—1, €l
(Xs,,‘7 US) = MQ,A,‘G, i€ H1;L
Vs,i = Np,i0 + dj, ieli,
Xi(N) = Xs, X i€l
V,I;,()A(/,d/,[);u,f)) < V,(,()A(/,d/,[);l],é), ie Iy.p
where

N—1
Vi(%, dhpia, 0) = > |1xi() = Xs,illa+ [1U() — Usl| B+ feco (Vs,i» Us, )
j=0

» (i and @ are feasible solutions, based on a solution of the same
problem at time k — 1.

» Last constraint: robust stability constraint (Badgwell, 1997).
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Stability

Theorem

For any p, the closed-loop system controlled by the proposed
controller is stable and converges asymptotically to a steady point
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Stability

Theorem
For any p, the closed-loop system controlled by the proposed
controller is stable and converges asymptotically to a steady point

(X;, U;7 y;) = arg min(x,u,y) feco(y, u, P)-
Sketch of the proof:

» Recursive feasibility is ensured by the fact that the real plant
T € M.

» Cost decreasing is ensured by the robust constraint

Vi (%, di, pru, 0) < Vi(Xi, di, p;0,6), i € Ty

» Convergence to (xZ, ul, yZ) is proved by means of convexity.

» Asymptotic Stability is proved resorting to Lyapunov arguments.
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Properties of the proposed controller

» The controller ensures feasibility under any change of the
economic objective.

» The controller ensures convergence to the equilibrium
point provided by the RTO

(X;aU;aY;) = arg(min)feco(}/> Uap)

[hat}

st. xeX, uelu
X=AXx+Bu, y=0Cx

» The multi-model approach ensures robustness to model
uncertainties.
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Simulation example
The 4 tanks plant

Interesting features:

1.

A 0D

dh,
dt
dhs
dt
dhs
dt

. The outputs are strongly coupled.

All the states are measurable.

The system is nonlinear.

The states and inputs are
constrained.

Ya _Qa
A 3600

Yo _9b
——v29h2+ \/29/74-1- A 3600
’Yb) v
% Vagh + | 3600

_ ’Ya) Qa
— % aghi + ¢ 3600

2gh + 2ghs +

=
JINS
1A
|
e
¥

1
A4
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Simulation example

» Linearized model:

1 )
., ™ 0 a0 wm 0
Ix =1 A 36004
ar 0w 01 A | XF 0 3% |u
0 0o = 0 3600A
73 (1—7a) 0
0 0 ©0 ;—41 3600A

where x; = hj — h?, uj:qj—q]f’,j:a,bandi:L---,4.
=22 >0,i=1, 4,

» Models:linearization points

Model h1 h2 Qa Qb
T4 0.4210 | 0.4678 | 1.4802 | 1.5197
2 0.2977 | 0.3308 | 1.2447 | 1.2779
3 0.8550 | 0.5672 | 1.0444 | 2.6980
Tho 0.6487 | 0.6636 1.63 2

» Model 7, is the nominal model.
» Model 7 is been taken as the real plant model.
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Simulation example
» Economic cost function:

V..
feco(y, U, p) = (qg + p1 Ch?;) + PZA(/,H f:/_"hz)

where y = (hy, h2), U= (Qa, Qb), p = (p1, p2), and Vpp, is the
minimum volume to be accumulated.

» ol =(1,20), p@ = (1,10) and pl®! = (0.4, 30).
» MPC setup: Q=Il4, R=0.01h,and N = 6.
» Constraints:
02 <h< 1.20[m
0 <ga< 3.26[m°/h]
0 <gp< 4.00[m*/h]

» Simulations in Matlab using fmincon.
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Simulation results
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Simulation results

Economic costs: time evolutions
24 T T T T

22| feco
f___Multimodel
eco

20

— — —f___Nominal
eco

18}
16

g 14
.‘_d)

12

10\7
)
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Summary

Conclusions:

» A multi-model one layer RTO+MPC strategy has been
proposed to reduce inconsistencies in the traditional
hierarchical structure RTO/MPC.

» The multi-model approach ensures robustness to model
uncertainties or changes in the operative conditions.

» Recursive feasibility and convergence are always ensured,
for any changing economic objective.

» Stability is proved resorting to Lyapunov arguments.

Future works:
» Nonconvex fggo.
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Thanks for your attention!
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