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Real Time Optimization

Hierarchical control structure (Qin & Badgwell (2003);

Engell (2007)):

1. The Real Time Optimizer (RTO)

computes the operation point
according to economic criteria

and operation limits.

2. The RTO solves an optimization

problem based on a complex

nonlinear stationary model of
the plant.

3. The setpoints computed by the
RTO are sent to the MPC

control.

4. MPC solves a QP based on a

simplified dynamic model of the

plant and constraints.
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Drawbacks of the control structure

◮ RTO time scale (hours or days) VS MPC time scale

(minutes).

◮ Slow reaction to process variations (disturbances).

◮ There exist mismatches between the models of RTO and

MPC.

◮ The RTO may provide inconsistent setpoints to the MPC.
◮ Unreachability of the setpoints.
◮ Poor economic performances.
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Existing solutions

◮ SSTO or LP/QP-MPC (Muske (1997); Ying & Joseph
(1999); Marchetti et al. (2014))

◮ Same model as the MPC.
◮ Same sample time as the MPC.

◮ One-layer solutions
◮ Dynamic RTO (Biegler (2009); Kadam & Marquardt (2007);

Würth et al. (2009))

◮ One layer RTO+MPC (Adetola & Guay (2010); Zanin et al.

(2002))

◮ Economic MPC (Amrit (2011); Angeli et al. (2012); Diehl

et al. (2011); Fagiano & Teel (2013); Ferramosca et al.

(2014))
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Industrial application

◮ Controllers use linear prediction models.

◮ Plants has sparse operation points with different

economics behaviors.

◮ When the operation point changes, the prediction model is
not adequate to represents the new operative condition.

◮ YPF (Argentina) and Petrobras (Brazil) report this issue.

Proposed solution:

multi-model representation of the plant (Badgwell (1997))
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Multi-model description of the plant
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◮ The real model of the plant is not known.

◮ We have a collection of linear model Π = {π1, ..., πL} s.t.

πi : x+
i = Aix + Biu, yi = Cix , i ∈ I1:L

◮ πr ∈ Π defines the real model, πno ∈ Π a nominal model for
predictions.
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◮ Define an augmented system with an integrating output

disturbance:
[

x+
i

d+
i

]

=

[

Ai 0
0 Ip

] [

xi

di

]

+

[

Bi

0

]

u

yi =
[

Ci Ip
]

[

xi

di

]
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Multi-model description of the plant
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◮ Control structure equipped with one observer per each model:

x̂i(k + 1) = Ai x̂(k) + Bi u(k)

d̂i(k + 1) = d̂i(k) + Ld
i (Ci x̂i(k)− y(k) + d̂i(k))

◮ d̂(k) is an estimation of the output disturbance.
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Basic Assumptions

◮ x(k) ∈ X , u(k) ∈ U , for all k ≥ 0. X is convex and closed,

U is convex and compact and both sets contain the origin

in their interior.

◮ Ai is stable. The pair (Ai ,Bi) is controllable.

◮ feco(y ,u, ρ) is a convex nonlinear function that takes into

account the economic objectives of the plant.

(x∗

s ,u
∗

s , y
∗

s ) = arg min
(x,u,y)

feco(y ,u, ρ)

s.t . x ∈ X , u ∈ U

x = Ar x + Bru, y = Crx

◮ ρ is a parameter that takes into account prices, costs or

production goals.
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Basic Assumptions

◮ The stationary conditions of each model can be mapped in

a m-dimensional linear subspace s. t.

(xs,i ,us) = Mθ,iθ, ys,i = Nθ,iθ

given a parameter θ ∈ IR
m.

◮ The sets of admissible equilibrium states, inputs and

outputs are

Zs,i = {(xi ,u) ∈ X × U | xi = Aixi + Biu}

Xs,i = {xi ∈ X | ∃u ∈ U such that (xi ,u) ∈ Zs,i}

Ys,i = {y = Cixi | (xi ,u) ∈ Zs,i}
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Multi-model one-layer MPC

Include the RTO economic objective in the MPC control problem.

◮ Economic and dynamic objectives in one optimization problem.

◮ Reduces incosistency/unreachability.

◮ Better economic performance.

The proposed cost function reads:

VN(x , d̂,ρ;u, θ)=
N−1
∑

j=0

‖xno(j)−xs,no‖
2
Q+‖u(j)−us‖

2
R+VO(hs , us, ρ)

where

VO(hs, us, ρ) =
L

∑

i=1

feco(ys,i , us, ρ), and hs=







ys,1

...

ys,L






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Optimization problem
Problem PN(x , ẑ, d̂ , ρ, ũ, θ̃)

min
u,θ

VN(x , d̂ , ρ;u, θ)

s.t . xi(0) = x̂i , i ∈ I1:L

xi(j + 1) = Ai xi(j) + Biu(j), j ∈ I0:N−1, i ∈ I1:L

xi(j) ∈ X , u(j) ∈ U , j ∈ I0:N−1, i ∈ I1:L

(xs,i , us) = Mθ,iθ, i ∈ I1:L

ys,i = Nθ,iθ + d̂i , i ∈ I1:L

xi(N) = xs,i i ∈ I1:L

V i
N(x̂i , d̂i , ρ;u, θ) ≤ V i

N(x̂i , d̂i , ρ; ũ, θ̃), i ∈ I1:L

where

V i
N(x̂i , d̂i ,ρ;u, θ) =

N−1
∑

j=0

‖xi(j)−xs,i‖
2
Q+‖u(j)−us‖

2
R+feco(ys,i , us, ρ)

◮ ũ and θ̃ are feasible solutions, based on a solution of the same
problem at time k − 1.

◮ Last constraint: robust stability constraint (Badgwell, 1997).
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Stability

Theorem
For any ρ, the closed-loop system controlled by the proposed

controller is stable and converges asymptotically to a steady point
(x∗

s , u
∗

s , y
∗

s ) = arg min(x,u,y) feco(y , u, ρ).

Sketch of the proof:

◮ Recursive feasibility is ensured by the fact that the real plant

πr ∈ Π.

◮ Cost decreasing is ensured by the robust constraint

V i
N(x̂i , d̂i , ρ;u, θ) ≤ V i

N(x̂i , d̂i , ρ; ũ, θ̃), i ∈ I1:L

◮ Convergence to (x∗

s , u
∗

s , y
∗

s ) is proved by means of convexity.

◮ Asymptotic Stability is proved resorting to Lyapunov arguments.
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Properties of the proposed controller

◮ The controller ensures feasibility under any change of the

economic objective.

◮ The controller ensures convergence to the equilibrium

point provided by the RTO

(x∗

s ,u
∗

s , y
∗

s ) = arg min
(x,u,y)

feco(y ,u, ρ)

s.t . x ∈ X , u ∈ U

x = Ar x + Bru, y = Crx

◮ The multi-model approach ensures robustness to model

uncertainties.
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Simulation example

The 4 tanks plant

Interesting features:

1. All the states are measurable.

2. The outputs are strongly coupled.

3. The system is nonlinear.

4. The states and inputs are

constrained.

dh1

dt
= −

a1

A

√

2gh1 +
a3

A

√

2gh3 +
γa

A

qa

3600
dh2

dt
= −

a2

A

√

2gh2 +
a4

A

√

2gh4 +
γb

A

qb

3600

dh3

dt
= −

a3

A

√

2gh3 +
(1 − γb)

A

qb

3600

dh4

dt
= −

a4

A

√

2gh4 +
(1 − γa)

A

qa

3600
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Simulation example
◮ Linearized model:

dx

dt
=













−1

τ1

0 A
Aτ3

0

0 −1
τ2

0 A
Aτ4

0 0 −1
τ3

0

0 0 0 −1
τ4













x+









γa

3600A
0

0
γb

3600A

0
(1−γb)
3600A

(1−γa)
3600A

0









u

where xi = hi − ho
i , uj = qj − qo

j , j = a, b and i = 1, · · · , 4.

τi =
A
ai

√

2h0
i

g
≥ 0, i = 1, · · · , 4.

◮ Models:linearization points

Model h1 h2 qa qb

π1 0.4210 0.4678 1.4802 1.5197

π2 0.2977 0.3308 1.2447 1.2779

π3 0.8550 0.5672 1.0444 2.6980

πno 0.6487 0.6636 1.63 2

◮ Model πno is the nominal model.

◮ Model π1 is been taken as the real plant model.
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Simulation example

◮ Economic cost function:

feco(y , u, ρ) = (q2
a + ρ1q2

b) + ρ2
Vmin

A(h1 + h2)

where y = (h1, h2), u = (qa, qb), ρ = (ρ1, ρ2), and Vmin is the

minimum volume to be accumulated.

◮ ρ[1] = (1, 20), ρ[2] = (1, 10) and ρ[3] = (0.4, 30).

◮ MPC setup: Q = I4, R = 0.01I2, and N = 6.

◮ Constraints:

0.2 ≤ hi ≤ 1.20 [m]

0 ≤ qa ≤ 3.26 [m3/h]

0 ≤ qb ≤ 4.00 [m3/h]

◮ Simulations in Matlab using fmincon.
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Simulation results
Outputs and inputs: time evolutions
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Simulation results
Economic costs: time evolutions
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Summary

Conclusions:

◮ A multi-model one layer RTO+MPC strategy has been

proposed to reduce inconsistencies in the traditional

hierarchical structure RTO/MPC.

◮ The multi-model approach ensures robustness to model

uncertainties or changes in the operative conditions.

◮ Recursive feasibility and convergence are always ensured,

for any changing economic objective.

◮ Stability is proved resorting to Lyapunov arguments.

Future works:

◮ Nonconvex feco.
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Thanks for your attention!
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